Qualitative and Artificial Intelligence-Based Sentiment Analyses of Anti-Lgbti Plus Hate Speech on Twitter in Turkey

dc.authoridOBAN, Volkan/0000-0003-1046-9155
dc.authoridDogan, Muzaffer Berna/0000-0003-0626-6582
dc.authoridDikec, Gul/0000-0002-7593-4014
dc.authorscopusid57215683950
dc.authorscopusid58082138500
dc.authorscopusid57056407400
dc.authorwosidDogan, Muzaffer Berna/AAR-2276-2020
dc.authorwosidDikec, Gul/L-1623-2018
dc.contributor.authorDikeç, Gül
dc.contributor.authorOban, Volkan
dc.contributor.authorDikec, Gul
dc.contributor.otherHemşirelik Bölümü
dc.date.accessioned2025-01-11T13:00:52Z
dc.date.available2025-01-11T13:00:52Z
dc.date.issued2023
dc.departmentFenerbahçe Universityen_US
dc.department-temp[Dogan, M. Berna] Arel Univ, Fac Hlth Sci, Dept Nursing, Istanbul, Turkey; [Dikec, Gul] Fenerbahce Univ, Fac Hlth Sci, Dept Nursing, Istanbul, Turkeyen_US
dc.descriptionOBAN, Volkan/0000-0003-1046-9155; Dogan, Muzaffer Berna/0000-0003-0626-6582; Dikec, Gul/0000-0002-7593-4014en_US
dc.description.abstractThe aim of this study was to evaluate hate speech in Turkish LGBTI+-related tweets during a one-month period of artificial intelligence-based sentiment analyses. Turkish tweets related to LGBTI+, were retrieved using Python library Tweepy and were evaluated by sentiment analysis. The researchers then performed a qualitative analysis of the most frequently liked and retweeted tweets (n = 556). Sentiment analysis revealed that 69.5% of tweets were negative, 23.3% were neutral, and 7.2% were positive. The qualitative analysis was grouped under seven themes: LGBTI+ Club; Terrorism and Terrorist Organization Membership; Perversion, Illness, Immorality; Presence in History; Religious References; Insults; and Humiliation. The results of this study show that anti-LGBTI+ hate speech in Turkey is significant in terms of both quality and quantity. As LGBTI+ individuals are at risk for excess mental distress and disorders, it is important to understand the risks and other factors that ameliorate stress and contribute to mental health in social media.en_US
dc.description.woscitationindexScience Citation Index Expanded - Social Science Citation Index
dc.identifier.citation1
dc.identifier.doi10.1080/01612840.2022.2158407
dc.identifier.endpage120en_US
dc.identifier.issn0161-2840
dc.identifier.issn1096-4673
dc.identifier.issue2en_US
dc.identifier.pmid36668726
dc.identifier.scopus2-s2.0-85147022933
dc.identifier.scopusqualityQ2
dc.identifier.startpage112en_US
dc.identifier.urihttps://doi.org/10.1080/01612840.2022.2158407
dc.identifier.urihttps://hdl.handle.net/20.500.14627/80
dc.identifier.volume44en_US
dc.identifier.wosWOS:000918229900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherTaylor & Francis incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleQualitative and Artificial Intelligence-Based Sentiment Analyses of Anti-Lgbti Plus Hate Speech on Twitter in Turkeyen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5c77a7-3a7b-4fe0-b362-b15ddfd532ee
relation.isAuthorOfPublication.latestForDiscoveryaf5c77a7-3a7b-4fe0-b362-b15ddfd532ee
relation.isOrgUnitOfPublicationd3fbf5c4-0410-4170-b6ae-7d7affd3c6dd
relation.isOrgUnitOfPublication.latestForDiscoveryd3fbf5c4-0410-4170-b6ae-7d7affd3c6dd

Files