Qualitative and Artificial Intelligence-Based Sentiment Analyses of Anti-Lgbti Plus Hate Speech on Twitter in Turkey

dc.authorid OBAN, Volkan/0000-0003-1046-9155
dc.authorid Dogan, Muzaffer Berna/0000-0003-0626-6582
dc.authorid Dikec, Gul/0000-0002-7593-4014
dc.authorscopusid 57215683950
dc.authorscopusid 58082138500
dc.authorscopusid 57056407400
dc.authorwosid Dogan, Muzaffer Berna/AAR-2276-2020
dc.authorwosid Dikec, Gul/L-1623-2018
dc.contributor.author Dikeç, Gül
dc.contributor.author Oban, Volkan
dc.contributor.author Dikec, Gul
dc.contributor.other Hemşirelik Bölümü
dc.date.accessioned 2025-01-11T13:00:52Z
dc.date.available 2025-01-11T13:00:52Z
dc.date.issued 2023
dc.department Fenerbahçe University en_US
dc.department-temp [Dogan, M. Berna] Arel Univ, Fac Hlth Sci, Dept Nursing, Istanbul, Turkey; [Dikec, Gul] Fenerbahce Univ, Fac Hlth Sci, Dept Nursing, Istanbul, Turkey en_US
dc.description OBAN, Volkan/0000-0003-1046-9155; Dogan, Muzaffer Berna/0000-0003-0626-6582; Dikec, Gul/0000-0002-7593-4014 en_US
dc.description.abstract The aim of this study was to evaluate hate speech in Turkish LGBTI+-related tweets during a one-month period of artificial intelligence-based sentiment analyses. Turkish tweets related to LGBTI+, were retrieved using Python library Tweepy and were evaluated by sentiment analysis. The researchers then performed a qualitative analysis of the most frequently liked and retweeted tweets (n = 556). Sentiment analysis revealed that 69.5% of tweets were negative, 23.3% were neutral, and 7.2% were positive. The qualitative analysis was grouped under seven themes: LGBTI+ Club; Terrorism and Terrorist Organization Membership; Perversion, Illness, Immorality; Presence in History; Religious References; Insults; and Humiliation. The results of this study show that anti-LGBTI+ hate speech in Turkey is significant in terms of both quality and quantity. As LGBTI+ individuals are at risk for excess mental distress and disorders, it is important to understand the risks and other factors that ameliorate stress and contribute to mental health in social media. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.citation 1
dc.identifier.doi 10.1080/01612840.2022.2158407
dc.identifier.endpage 120 en_US
dc.identifier.issn 0161-2840
dc.identifier.issn 1096-4673
dc.identifier.issue 2 en_US
dc.identifier.pmid 36668726
dc.identifier.scopus 2-s2.0-85147022933
dc.identifier.scopusquality Q2
dc.identifier.startpage 112 en_US
dc.identifier.uri https://doi.org/10.1080/01612840.2022.2158407
dc.identifier.uri https://hdl.handle.net/20.500.14627/80
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:000918229900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject [No Keyword Available] en_US
dc.title Qualitative and Artificial Intelligence-Based Sentiment Analyses of Anti-Lgbti Plus Hate Speech on Twitter in Turkey en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication af5c77a7-3a7b-4fe0-b362-b15ddfd532ee
relation.isAuthorOfPublication.latestForDiscovery af5c77a7-3a7b-4fe0-b362-b15ddfd532ee
relation.isOrgUnitOfPublication d3fbf5c4-0410-4170-b6ae-7d7affd3c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d3fbf5c4-0410-4170-b6ae-7d7affd3c6dd

Files