Drawing Transmission Graphs for Covid-19 in the Perspective of Network Science

dc.authoridAktuna, Gamze/0000-0003-4575-7763
dc.authoridBATMAZ, Bulent/0000-0003-4706-5808
dc.authorscopusid26429334100
dc.authorscopusid49762611100
dc.authorscopusid57193202661
dc.authorwosidAktuna, Gamze/AAX-6753-2020
dc.authorwosidAktuna, Gamze/A-1491-2019
dc.authorwosidBATMAZ, Bulent/AAJ-9097-2021
dc.contributor.authorGursakal, N.
dc.contributor.authorBatmaz, B.
dc.contributor.authorAktuna, G.
dc.date.accessioned2025-01-11T13:01:23Z
dc.date.available2025-01-11T13:01:23Z
dc.date.issued2020
dc.departmentFenerbahçe Universityen_US
dc.department-temp[Gursakal, N.] Fenerbahce Univ, Fac Econ & Adm Sci, Istanbul, Turkey; [Batmaz, B.] Anadolu Univ, Open Educ Fac, Eskisehir, Turkey; [Aktuna, G.] Hacettepe Univ, Publ Hlth Inst, Ankara, Turkeyen_US
dc.descriptionAktuna, Gamze/0000-0003-4575-7763; BATMAZ, Bulent/0000-0003-4706-5808en_US
dc.description.abstractWhen we consider a probability distribution about how many COVID-19-infected people will transmit the disease, two points become important. First, there could be super-spreaders in these distributions/networks and second, the Pareto principle could be valid in these distributions/networks regarding estimation that 20% of cases were responsible for 80% of local transmission. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and second we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation6
dc.identifier.doi10.1017/S0950268820002654
dc.identifier.issn0950-2688
dc.identifier.issn1469-4409
dc.identifier.pmid33143782
dc.identifier.scopus2-s2.0-85096010466
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1017/S0950268820002654
dc.identifier.urihttps://hdl.handle.net/20.500.14627/120
dc.identifier.volume148en_US
dc.identifier.wosWOS:000619856700001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCovid-19en_US
dc.subjectNetwork Scienceen_US
dc.subjectReproduction Numberen_US
dc.subjectSuper-Spreaderen_US
dc.subjectTransmission Graphsen_US
dc.titleDrawing Transmission Graphs for Covid-19 in the Perspective of Network Scienceen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Drawing_transmission_graphs_for_COVID-19_in_the_pe.pdf
Size:
302.18 KB
Format:
Adobe Portable Document Format