Drawing Transmission Graphs for Covid-19 in the Perspective of Network Science
dc.authorid | Aktuna, Gamze/0000-0003-4575-7763 | |
dc.authorid | BATMAZ, Bulent/0000-0003-4706-5808 | |
dc.authorscopusid | 26429334100 | |
dc.authorscopusid | 49762611100 | |
dc.authorscopusid | 57193202661 | |
dc.authorwosid | Aktuna, Gamze/AAX-6753-2020 | |
dc.authorwosid | Aktuna, Gamze/A-1491-2019 | |
dc.authorwosid | BATMAZ, Bulent/AAJ-9097-2021 | |
dc.contributor.author | Gursakal, N. | |
dc.contributor.author | Batmaz, B. | |
dc.contributor.author | Aktuna, G. | |
dc.date.accessioned | 2025-01-11T13:01:23Z | |
dc.date.available | 2025-01-11T13:01:23Z | |
dc.date.issued | 2020 | |
dc.department | Fenerbahçe University | en_US |
dc.department-temp | [Gursakal, N.] Fenerbahce Univ, Fac Econ & Adm Sci, Istanbul, Turkey; [Batmaz, B.] Anadolu Univ, Open Educ Fac, Eskisehir, Turkey; [Aktuna, G.] Hacettepe Univ, Publ Hlth Inst, Ankara, Turkey | en_US |
dc.description | Aktuna, Gamze/0000-0003-4575-7763; BATMAZ, Bulent/0000-0003-4706-5808 | en_US |
dc.description.abstract | When we consider a probability distribution about how many COVID-19-infected people will transmit the disease, two points become important. First, there could be super-spreaders in these distributions/networks and second, the Pareto principle could be valid in these distributions/networks regarding estimation that 20% of cases were responsible for 80% of local transmission. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and second we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 6 | |
dc.identifier.doi | 10.1017/S0950268820002654 | |
dc.identifier.issn | 0950-2688 | |
dc.identifier.issn | 1469-4409 | |
dc.identifier.pmid | 33143782 | |
dc.identifier.scopus | 2-s2.0-85096010466 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1017/S0950268820002654 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14627/120 | |
dc.identifier.volume | 148 | en_US |
dc.identifier.wos | WOS:000619856700001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Cambridge Univ Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Covid-19 | en_US |
dc.subject | Network Science | en_US |
dc.subject | Reproduction Number | en_US |
dc.subject | Super-Spreader | en_US |
dc.subject | Transmission Graphs | en_US |
dc.title | Drawing Transmission Graphs for Covid-19 in the Perspective of Network Science | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Drawing_transmission_graphs_for_COVID-19_in_the_pe.pdf
- Size:
- 302.18 KB
- Format:
- Adobe Portable Document Format