Drawing Transmission Graphs for Covid-19 in the Perspective of Network Science

dc.authorid Aktuna, Gamze/0000-0003-4575-7763
dc.authorid BATMAZ, Bulent/0000-0003-4706-5808
dc.authorscopusid 26429334100
dc.authorscopusid 49762611100
dc.authorscopusid 57193202661
dc.authorwosid Aktuna, Gamze/AAX-6753-2020
dc.authorwosid Aktuna, Gamze/A-1491-2019
dc.authorwosid BATMAZ, Bulent/AAJ-9097-2021
dc.contributor.author Gursakal, N.
dc.contributor.author Batmaz, B.
dc.contributor.author Aktuna, G.
dc.date.accessioned 2025-01-11T13:01:23Z
dc.date.available 2025-01-11T13:01:23Z
dc.date.issued 2020
dc.department Fenerbahçe University en_US
dc.department-temp [Gursakal, N.] Fenerbahce Univ, Fac Econ & Adm Sci, Istanbul, Turkey; [Batmaz, B.] Anadolu Univ, Open Educ Fac, Eskisehir, Turkey; [Aktuna, G.] Hacettepe Univ, Publ Hlth Inst, Ankara, Turkey en_US
dc.description Aktuna, Gamze/0000-0003-4575-7763; BATMAZ, Bulent/0000-0003-4706-5808 en_US
dc.description.abstract When we consider a probability distribution about how many COVID-19-infected people will transmit the disease, two points become important. First, there could be super-spreaders in these distributions/networks and second, the Pareto principle could be valid in these distributions/networks regarding estimation that 20% of cases were responsible for 80% of local transmission. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and second we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation 6
dc.identifier.doi 10.1017/S0950268820002654
dc.identifier.issn 0950-2688
dc.identifier.issn 1469-4409
dc.identifier.pmid 33143782
dc.identifier.scopus 2-s2.0-85096010466
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1017/S0950268820002654
dc.identifier.uri https://hdl.handle.net/20.500.14627/120
dc.identifier.volume 148 en_US
dc.identifier.wos WOS:000619856700001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.subject Covid-19 en_US
dc.subject Network Science en_US
dc.subject Reproduction Number en_US
dc.subject Super-Spreader en_US
dc.subject Transmission Graphs en_US
dc.title Drawing Transmission Graphs for Covid-19 in the Perspective of Network Science en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Drawing_transmission_graphs_for_COVID-19_in_the_pe.pdf
Size:
302.18 KB
Format:
Adobe Portable Document Format