A Quest for Formant-Based Compact Nonuniform Trapezoidal Filter Banks for Speech Processing With Vgg16

dc.authorid PARLAK (PhD), CEVAHIR/0000-0002-5500-7379
dc.authorid ALTUN, Prof. Dr. Yusuf/0000-0002-2099-0959
dc.authorscopusid 55807221400
dc.authorscopusid 25031391400
dc.authorwosid PARLAK (PhD), Cevahir/ABA-4914-2021
dc.authorwosid ALTUN, Prof. Dr. Yusuf/AAA-9929-2020
dc.contributor.author Parlak, Cevahir
dc.contributor.author Altun, Yusuf
dc.contributor.other Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2025-01-11T13:03:35Z
dc.date.available 2025-01-11T13:03:35Z
dc.date.issued 2024
dc.department Fenerbahçe University en_US
dc.department-temp [Parlak, Cevahir] Fenerbahce Univ, Comp Engn Dept, Istanbul, Turkiye; [Altun, Yusuf] Duzce Univ, Comp Engn Dept, Duzce, Turkiye en_US
dc.description PARLAK (PhD), CEVAHIR/0000-0002-5500-7379; ALTUN, Prof. Dr. Yusuf/0000-0002-2099-0959 en_US
dc.description.abstract In this text, we discuss the filter banks used for speech analysis and propose a novel filter bank for speech processing applications. Filter banks are building blocks of speech processing applications. Multiple filter strategies have been proposed, including Mel, PLP, Seneff, Lyon, and Gammatone filters. MFCC is a transformed version of Mel filters and is still a state-of-the-art method for speech recognition applications. However, 40 years after their debut, time is running out to launch new structures as novel speech features. The proposed acoustic filter banks (AFB) are innovative alternatives to dethrone Mel filters, PLP filters, and MFCC features. Foundations of AFB filters are based on the formant regions of vowels and consonants. In this study, we pioneer an acoustic filter bank comprising 11 frequency regions and conduct experiments using the VGG16 model on the TIMIT and Speech Command V2 datasets. The outcomes of the study concretely indicate that MFCC, Mel, and PLP filters can effectively be replaced with novel AFB filter bank features. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation 0
dc.identifier.doi 10.1007/s00034-024-02794-z
dc.identifier.endpage 7338 en_US
dc.identifier.issn 0278-081X
dc.identifier.issn 1531-5878
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85200054858
dc.identifier.scopusquality Q2
dc.identifier.startpage 7309 en_US
dc.identifier.uri https://doi.org/10.1007/s00034-024-02794-z
dc.identifier.uri https://hdl.handle.net/20.500.14627/288
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:001281629000005
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer Birkhauser en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Speech Processing en_US
dc.subject Mfcc en_US
dc.subject Mel Filters en_US
dc.subject Plp en_US
dc.subject Filter Banks en_US
dc.subject Convolutional Neural Networks en_US
dc.title A Quest for Formant-Based Compact Nonuniform Trapezoidal Filter Banks for Speech Processing With Vgg16 en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication d57697e4-e3d0-4c57-bb5c-4b92ceb92d1a
relation.isAuthorOfPublication.latestForDiscovery d57697e4-e3d0-4c57-bb5c-4b92ceb92d1a
relation.isOrgUnitOfPublication 85e04a04-fb9d-4894-961f-e92f27bb6cb6
relation.isOrgUnitOfPublication.latestForDiscovery 85e04a04-fb9d-4894-961f-e92f27bb6cb6

Files