Improving Yolo Detection Performance of Autonomous Vehicles in Adverse Weather Conditions Using Metaheuristic Algorithms

dc.authoridozcan, ibrahim/0000-0001-9471-5119
dc.authoridALTUN, Prof. Dr. Yusuf/0000-0002-2099-0959
dc.authoridPARLAK (PhD), CEVAHIR/0000-0002-5500-7379
dc.authorscopusid57225723807
dc.authorscopusid25031391400
dc.authorscopusid55807221400
dc.authorwosidözcan, ibrahim/IAP-0607-2023
dc.authorwosidPARLAK (PhD), Cevahir/ABA-4914-2021
dc.authorwosidALTUN, Prof. Dr. Yusuf/AAA-9929-2020
dc.contributor.authorParlak, Cevahir
dc.contributor.authorAltun, Yusuf
dc.contributor.authorParlak, Cevahir
dc.contributor.otherBilgisayar Mühendisliği Bölümü
dc.date.accessioned2025-01-11T13:03:29Z
dc.date.available2025-01-11T13:03:29Z
dc.date.issued2024
dc.departmentFenerbahçe Universityen_US
dc.department-temp[Ozcan, Ibrahim] Kutahya Dumlupinar Univ, Dept Comp Usage, TR-43020 Kutahya, Turkiye; [Altun, Yusuf] Duzce Univ, Dept Comp Engn, TR-81620 Duzce, Turkiye; [Parlak, Cevahir] Fenerbahce Univ, Dept Comp Engn, TR-43020 Istanbul, Turkiyeen_US
dc.descriptionozcan, ibrahim/0000-0001-9471-5119; ALTUN, Prof. Dr. Yusuf/0000-0002-2099-0959; PARLAK (PhD), CEVAHIR/0000-0002-5500-7379en_US
dc.description.abstractDespite the rapid advances in deep learning (DL) for object detection, existing techniques still face several challenges. In particular, object detection in adverse weather conditions (AWCs) requires complex and computationally costly models to achieve high accuracy rates. Furthermore, the generalization capabilities of these methods struggle to show consistent performance under different conditions. This work focuses on improving object detection using You Only Look Once (YOLO) versions 5, 7, and 9 in AWCs for autonomous vehicles. Although the default values of the hyperparameters are successful for images without AWCs, there is a need to find the optimum values of the hyperparameters in AWCs. Given the many numbers and wide range of hyperparameters, determining them through trial and error is particularly challenging. In this study, the Gray Wolf Optimizer (GWO), Artificial Rabbit Optimizer (ARO), and Chimpanzee Leader Selection Optimization (CLEO) are independently applied to optimize the hyperparameters of YOLOv5, YOLOv7, and YOLOv9. The results show that the preferred method significantly improves the algorithms' performances for object detection. The overall performance of the YOLO models on the object detection for AWC task increased by 6.146%, by 6.277% for YOLOv7 + CLEO, and by 6.764% for YOLOv9 + GWO.en_US
dc.description.sponsorshipDuzce University Scientific Research Projects Coordination Office [BAP-2020.06.01.1060]en_US
dc.description.sponsorshipThis research was funded by Duzce University Scientific Research Projects Coordination Office with the Scientific Research Project grant number BAP-2020.06.01.1060.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation1
dc.identifier.doi10.3390/app14135841
dc.identifier.issn2076-3417
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-85198479179
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app14135841
dc.identifier.urihttps://hdl.handle.net/20.500.14627/278
dc.identifier.volume14en_US
dc.identifier.wosWOS:001269153900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAroen_US
dc.subjectCleoen_US
dc.subjectDawn Dataseten_US
dc.subjectDeep Learningen_US
dc.subjectGwoen_US
dc.subjectObject Detectionen_US
dc.subjectRtts Dataseten_US
dc.subjectYolov5en_US
dc.subjectYolov7en_US
dc.subjectYolov9en_US
dc.titleImproving Yolo Detection Performance of Autonomous Vehicles in Adverse Weather Conditions Using Metaheuristic Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd57697e4-e3d0-4c57-bb5c-4b92ceb92d1a
relation.isAuthorOfPublication.latestForDiscoveryd57697e4-e3d0-4c57-bb5c-4b92ceb92d1a
relation.isOrgUnitOfPublication85e04a04-fb9d-4894-961f-e92f27bb6cb6
relation.isOrgUnitOfPublication.latestForDiscovery85e04a04-fb9d-4894-961f-e92f27bb6cb6

Files