Google Trend Index as an Investor Sentiment Proxy in Cryptomarket: Nonlinear Relationships With Cryptomarket and Predicting Bitcoin Returns With Machine Learning Approach

dc.contributor.author Koy, Ayben
dc.contributor.author Demir, Semra
dc.contributor.author Colak, Andac Batur
dc.date.accessioned 2025-12-10T15:04:52Z
dc.date.available 2025-12-10T15:04:52Z
dc.date.issued 2025
dc.description.abstract This study investigates the utility of Google trend indices as proxies of investor sentiment, examining their relationships with cryptocurrency market prices and their potential for return prediction. Employing several nonlinear econometric models including the momentum threshold autoregressive AR (MTAR), Kapetanios, Shin, and Snell, and exponential smooth transition autoregressive vector error correction model, the research the relationships between Google trend indices and BTC prices. Additionally, the study evaluates the performance of three developed artificial neural network models in predicting bitcoin returns based on investor sentiment derived from Google trend indices. The findings highlight that the MTAR model effectively captures significant relationships between the variables studied. However, predicting bitcoin returns remains challenging due to their typically small values, which represent the changes between observation points. en_US
dc.identifier.doi 10.1007/s10100-025-01012-8
dc.identifier.issn 1435-246X
dc.identifier.issn 1613-9178
dc.identifier.scopus 2-s2.0-105022610867
dc.identifier.uri https://doi.org/10.1007/s10100-025-01012-8
dc.identifier.uri https://hdl.handle.net/20.500.14627/1329
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Central European Journal of Operations Research en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Investment Sentiment en_US
dc.subject Google Trend Index en_US
dc.subject Bitcoin en_US
dc.subject Artificial Neural Network en_US
dc.subject G41 en_US
dc.subject C45 en_US
dc.subject C53 en_US
dc.title Google Trend Index as an Investor Sentiment Proxy in Cryptomarket: Nonlinear Relationships With Cryptomarket and Predicting Bitcoin Returns With Machine Learning Approach
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202917644
gdc.author.scopusid 60147511700
gdc.author.scopusid 57216657788
gdc.author.wosid Çolak, Andaç Batur/Aav-3639-2020
gdc.description.department Fenerbahçe University en_US
gdc.description.departmenttemp [Koy, Ayben] Fenerbahce Univ, Istanbul, Turkiye; [Demir, Semra] Burdur Mehmet Akif Ersoy Univ, Burdur, Turkiye; [Colak, Andac Batur] Nigde Omer Halisdemir Univ, Nigde, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W7106241666
gdc.identifier.wos WOS:001620281800001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.86
gdc.openalex.toppercent TOP 10%
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0

Files