Tuncel Turan, Duygu
Loading...
Profile URL
Name Variants
Tuncel, Duygu
Tuncel, Duygu
Tuncel, Duygu
Job Title
Doktor Öğretim
Email Address
duygu.tuncel@fbu.edu.tr
Main Affiliation
Temel Eczacılık Bilimleri Bölümü
Temel Eczacılık Bilimleri Bölümü
Temel Eczacılık Bilimleri Bölümü
Temel Eczacılık Bilimleri Bölümü
Temel Eczacılık Bilimleri Bölümü
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
SDG data is not available

Scholarly Output
2
Articles
2
Citation Count
0
Supervised Theses
0
2 results
Scholarly Output Search Results
Now showing 1 - 2 of 2
Article TiO2@ZIF-8 Hybrid as a Type II Heterojunction Photocatalyst:Adsorption/Photocatalytic Properties, Kinetics, and Effect of Humidity(Springernature, 2025) Okte, A. Neren; Tuncel, Duygu; Temel Eczacılık Bilimleri BölümüTiO2@ZIF-8 hybrid and its humidified forms are synthesized as type 2 heterojunction systems using a facile sol-gel method at different relative humidity (RH) conditions. The hybrids' surface characteristics and optical properties are thoroughly examined, followed by investigations into adsorption capacities and photocatalytic activities using anionic-methyl orange (MO) and cationic-methylene blue (MB) dyes. TiO2@ZIF-8 hybrid generates a mesoporous structure with a higher surface area (135.6 m2 g-1) than bare TiO2 (40.1 m2 g-1). Band gap energies of TiO2@ZIF-8 (3.00 eV) and humidified hybrids (2.95-2.91 eV) decrease compared to the individual phases of TiO2 (3.08 eV) and ZIF-8 (4.9 eV). XPS analysis verifies the electron donation from ZIF-8 to TiO2. Adsorptions of MO and MB differ depending on the affinities of MO or MB's functional groups on the TiO2@ZIF-8 and humidified hybrids. TiO2@ZIF-8 demonstrates 98.7% MO and 89.5% MB degradations within 100 min irradiation. Dark adsorption studies follow Langmuir model with Langmuir constants of KL = 0.445 L mg-1 for MO in the presence of TiO2@ZIF-8 and KL = 0.409 L mg-1 for MB in the presence of TiO2@ZIF-8 (84% RH). Meanwhile, pseudo-second-order kinetic model is applicable for dark experiments with rate constants of k2 = 0.918 g mg-1 min-1 for MO in the existence of TiO2@ZIF-8 and k2 = 0.917 g mg-1 min-1 for MB in the existence of TiO2@ZIF-8 (84% RH). Under irradiation, TiO2@ZIF-8 (84% RH) has higher first-order rate constant 'k' values for both MO (0.0134 min-1) and MB (0.0146 min-1) relative to that of TiO2@ZIF-8 (0.0129 min-1 for MO and 0.0112 min-1 for MB). Based on Langmuir-Hinshelwood model, TiO2@ZIF-8 (84% RH)) shows the highest adsorption coefficients (K) of 0.164 L mg-1 for MO and 0.192 L mg-1 for MB and rate constants (k) of 0.197 mg L-1 min-1 for MO and 0.182 mg L-1 min-1 for MB. Notably, the hybrids maintain high stability and photocatalytic efficiency after four consecutive degradation cycles, highlighting their potential for sustainable environmental remediation.Article Citation - WoS: 7Citation - Scopus: 6Adsorption Mechanisms, Kinetics and Photoactivities of Green Synthesized Hydroxyapatite Supported Zno and La-Zno Catalysts(Pergamon-elsevier Science Ltd, 2024) Tuncel, Duygu; Okte, A. Neren; Temel Eczacılık Bilimleri BölümüIn this study, hydroxyapatite (HAP) is synthesized by a co-precipitation method from the waste eggshell, utilized as a support for ZnO (ZnO-HAP) and La-ZnO (La-ZnO-HAP) and employed to degrade methyl orange (MO) and methylene blue (MB) dyes under UV irradiation. Water vapor adsorption as relative humidity (84 % RH) on the HAP structure and the as-prepared catalysts are also examined. The characteristic ZnO and HAP reflections are detected in X-ray diffraction (XRD) analysis of ZnO-HAP, La-ZnO-HAP and humidified samples. ZnO and La-ZnO existence is also verified by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, UV-Vis diffuse reflectance (UV-Vis DRS) spectra and X-ray photoelectron spectra (XPS). ZnO and La-ZnO loading on the HAP induce the formation of mesoporous structures with high surface areas. Dark adsorption capacities and photoactivities of the as-prepared samples are explored regarding electrostatic interactions, Lewis acid-base interactions and hydrogen bonding for both MO and MB. In particular, La-ZnO-HAP 500 degrees C and La-ZnO-HAP 500 degrees C (RH) exhibit improved adsorption abilities and photoactivities. The pseudo-second order model describes the kinetic behavior of all samples under dark conditions. Unhumidified samples follow Langmuir isotherm while Freundlich isotherm better fits humidified ones. Under irradiation, the Langmuir-Hinshelwood kinetic model describes the photoactivities of all samples. The four recycling tests confirm the stabilities of HAP 100 degrees C, HAP 500 degrees C, ZnO-HAP 500 degrees C and La-ZnO-HAP 500 degrees C. This study suggests that the ZnO or La-ZnO loaded HAP catalysts prepared in the presence and absence of humid conditions are considered promising materials for environmental remediation.
