Browsing by Author "Yarat, Aysen"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation Count: 0Brain in Metabolic Syndrome Model: the Effect of Exercises and Caloric Restriction(Marmara Univ, 2022) Şener, Göksel; Genc-Kahraman, Nevin; Ipekci, Hazal; Ustundag, Unsal Veli; Tunali-Akbay, Tugba; Emekli-Alturfan, Ebru; Yarat, Aysen; Eczacılık Meslek Bilimleri BölümüCaloric restriction (CR) and exercise (EX) have impacts on improving metabolic risk factors. This study aimed to investigate the changes in the brain after EX and/or CR in metabolic syndrome (MeS) induced by a high fructose diet in rats. Sprague-Dawley male rats were divided into five groups. Drinking water including 10% fructose solution was given to rats for 12 weeks to develop a MeS rat model. Animals with MeS were submitted to EX and/or CR for 6 weeks. Blood glucose, and brain tissue damage and antioxidant parameters were measured. Brain lipid peroxidation, sialic acid, mucin, fucose levels increased in the MeS group compared to the control (C) group. These parameters reduced significantly in the metabolic syndrome with caloric restriction (MeS+CR) group, and more significantly in the metabolic syndrome with exercise and caloric restriction group (MeS+EXCR), compared to the MeS group. Glutathione levels, superoxide dismutase and catalase activities decreased in the MeS group compared to the C group, increased both in the MeS+CR group, and MeS+EXCR group compared to the MeS group. High fructose diet consumption can lead to brain tissue damage and decreased antioxidant levels were found to be improved best in the MeS+EXCR group.Article Citation Count: 6Effects of myrtus Communis L. Extract and Apocynin on Lens Oxidative Damage and Boron Levels in Rats With a High Fat-Diet(Galenos Publ House, 2021) Şener, Göksel; Kuru, Dilruba; Sen, Ali; Sener, Goksel; Ercan, Feriha; Yarat, Aysen; Eczacılık Meslek Bilimleri BölümüObjectives: Nutritional obesity causes oxidant damage in the body and cataract formation in the lenses by increasing the formation of free radicals. Myrtus communis leaf extracts (Myr) have antioxidant properties, and apocynin (Apo) is an effective NADPH-oxidase inhibitor. The data on tissue boron levels are quite lacking. The aim of this novel study was to investigate the effects of Myr and Apo treatment on boron levels and oxidative lens damage in rats fed a high-fat diet (HFD). Materials and Methods: Wistar albino male rats were randomly divided into four groups: the control group, HFD group, HFD + Myr group, and HFD + Apo group. Body weight and blood lipids were determined before and after the experiment. After decapitating the rats, the lenses were removed and homogenized. Catalase (CAT) and superoxide dismutase (SOD) activities and boron, malondialdehyde (MDA), and reduced glutathione (GSH) levels in the lens homogenates were determined. Results: The HFD increased serum triglyceride (p<0.05), total cholesterol level (p<0.001), body weight (p<0.001), and lens MDA levels (p<0.01) and decreased lens GSH (p<0.05) and boron level (p<0.01), SOD (p<0.001), and CAT activity (p<0.001). However, Myr and Apo treatment reduced the rats' body weight (p<0.001), serum triglyceride (p<0.05), and total cholesterol level (p<0.001) and increased lens boron (p<0.01; p<0.001), GSH levels (p<0.05; p<0.01), and CAT activity (p<0.001). Conclusion: Both Myr and Apo may be able to reduce oxidative stress in the lenses of obese rats caused by HFD by increasing boron levels.Article Citation Count: 1Investigation of Possible Neuroprotective Effects of Some Plant Extracts on Brain in Bile Duct Ligated Rats(Wiley, 2021) Şener, Göksel; Cilingir-Kaya, Ozlem Tugce; Sener, Goksel; Ozbeyli, Dilek; Sen, Ali; Sacan, Ozlem; Yarat, Aysen; Eczacılık Meslek Bilimleri BölümüThis study aimed to investigate the possible neuroprotective effects of bitter melon (BM), chard, and parsley extracts on oxidative damage that may occur in the brain of rats with bile duct ligation (BDL)-induced biliary cirrhosis. It was observed that lipid peroxidation (LPO), sialic acid (SA), and nitric oxide (NO) levels increased; glutathione (GSH) levels, catalase (CAT) activity, and tissue factor (TF) activity decreased significantly in the BDL group. However, in groups with BDL given BM, chard, and parsley extracts LPO, SA, NO levels decreased; GSH levels and CAT activities increased significantly. No significant differences were observed between groups in total protein, glutathione-S-transferase, superoxide dismutase, and boron. Histological findings were supported by the biochemical results. BM, chard, and parsley extracts were effective in the regression of oxidant damage caused by cirrhosis in the brain tissues. Practical applications Bitter melon (BM), chard, and parsley have antioxidant properties due to their bioactive compounds which are involved in scavenging free radicals, suppressing their production, and stimulating the production of endogenous antioxidant compounds. Since BM, chard, and parsley extracts were found to be effective in the regression of oxidant damage caused by cirrhosis in the brain tissues, these plant extracts may be an alternative in the development of different treatment approaches against brain damage in cirrhosis. At the same time, these species have been used as food by the people for many years. Therefore, they can be used safely as neuroprotective agents in treatment.