Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Turna, Özgür Can"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Advancements in Human Pose Estimation: A Review of Key Studies and Findings Till 2025
    (2025) Turna, Özgür Can; Özbalkan, Uğur
    This paper presents an in-depth literature review that comprehensively covers the major developments, methods, architectures and datasets used in the field of human pose prediction up to 2025. The review covers a broad spectrum, starting with traditional methods, deep learning-based techniques, convolutional neural networks, graph-based approaches and more recently prominent transformer-based models. In addition to two-dimensional (2D) and three-dimensional (3D) human pose estimation methods, the paper analyses in detail the diversity of data sets, applications of Microsoft Kinect technology, real-time pose estimation systems and related architectural designs. Overall, the review of more than 120 papers shows that existing systems have made significant progress in terms of accuracy, computational efficiency and practical applications, but that there are still some challenges to overcome in complex scenarios such as multiple person detection, occlusion problems and outdoor environments. This in-depth analysis highlights current trends in the field, future research directions and potential applications.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback