Browsing by Author "Erman, Gulay"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Evaluation of Octenidine Dihydrochloride-Induced Cytotoxicity, Apoptosis, and Inflammatory Responses in Human Ocular Epithelial and Retinal Cells(MDPI, 2025) Ciftci, Ihsan Hakki; Deveci Ozkan, Asuman; Erman, Gulay; Kilbas, Imdat; Aydemir, OzlemBackground/Objectives: Octenidine dihydrochloride (OCT-D) is a broad-spectrum antiseptic with high chemical stability, low toxicity, and no reported microbial resistance, making it a strong candidate for use on mucosal surfaces. Despite increasing interest in its potential ophthalmic applications, limited data exist regarding its cellular effects on ocular tissues. This study aimed to investigate the cytotoxic, apoptotic, inflammatory, and transcriptional responses induced by OCT-D in human conjunctival (IOBA-NHC) and retinal pigment epithelial (ARPE-19) cells. Methods: Cells were exposed to varying concentrations of OCT-D, and viability was assessed using the WST-1 assay to determine IC50 and IC50/2 values. These concentrations were subsequently used in molecular assays. Pro-inflammatory cytokines (IL-6, IL-1 beta, TNF-alpha, IFN-gamma) were quantified by ELISA. Apoptotic activation was evaluated through caspase-3/7 activity assays. Gene expression analysis of apoptotic (Bax, Bcl-2), DNA damage-related (ATM, Rad51), and inflammatory markers was performed using RT-qPCR. Results: OCT-D induced a marked, dose-dependent reduction in cell viability in both cell lines, with ARPE-19 showing greater sensitivity. Caspase-3/7 activity increased significantly at IC50 and IC50/2, confirming intrinsic apoptotic activation. OCT-D markedly suppressed the release of key inflammatory cytokines and downregulated transcription of inflammatory genes. RT-qPCR revealed upregulation of pro-apoptotic and DNA damage-associated genes, demonstrating coordinated activation of apoptotic and genomic stress pathways. Conclusion: OCT-D triggers integrated cytotoxic, apoptotic, and immunomodulatory responses in conjunctival and retinal epithelial cells. While these findings provide important mechanistic insights into OCT-D's cellular effects, further studies using primary cells, advanced 3D ocular models, and disease-relevant systems are required to support its potential translational use in ophthalmology.Article In Vitro Investigation of the Effects of Octenidine Dihydrochloride on Nasal Septum Squamous Carcinoma Cells(MDPI, 2025) Ciftci, Ihsan Hakki; Ozkan, Asuman Deveci; Erman, Gulay; Kilbas, Elmas Pinar Kahraman; Koroglu, MehmetBackground/Objectives: The aim of this study was to investigate the cytotoxic, genotoxic, apoptotic, and anti-inflammatory effects of the antiseptic agent octenidine dihydrochloride (OCT-D) on the RPMI-2650 cell line derived from human nasal mucosa in vitro. Methods: RPMI-2650 cells and Human Umbilical Cord Endothelial Cells (HUVECs) were treated with various concentrations of OCT-D (0.00625-0.4%) for 12 and 24 h. Cell viability was assessed using the WST-1 assay, while DNA damage was assessed using the comet and micronucleus (MN) assays. Apoptotic activity was determined using Annexin V flow cytometry and fluorescence microscopy. Intracellular reactive oxygen species (ROS) levels were measured, and inflammatory cytokines (IL-1 beta, IL-6, TNF-alpha, and IFN-gamma) were measured by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of genes associated with apoptosis, oxidative stress, and inflammation was analyzed using RT-PCR. Results: OCT-D caused dose- and time-dependent cytotoxicity, and RPMI-2650 cells showed greater resistance compared to HUVECs. While a strong apoptotic response was observed in HUVECs, RPMI-2650 cells exhibited limited apoptosis. OCT-D was found to cause dose-dependent DNA damage and an increase in MN in both cell lines. OCT-D significantly reduced cytokine levels and ROS production in both cell types. RT-PCR results supported its anti-inflammatory and antioxidant effects at the molecular level. Conclusions: In conclusion, this study demonstrated that OCT-D exhibited minimal cytotoxic and apoptotic effects in RPMI-2650 cells, but affected vascular structure by inducing apoptosis in endothelial cells. These findings provide important evidence that OCT-D can be used as a potential adjunctive agent in nasal treatments, and these data need to be supported by preclinical and clinical studies.

